SIL15E-12V SERIES

0.8V - 3.63Vin Single output

15A Current rating

Input voltage range: 10.0V - 14.0V

Output voltage range: 0.8V - 3.63V

Ultra high efficiency: 94% @ 12Vin and 3.3Vout

Extremely low internal power dissipation

Minimal thermal design concerns

Designed in reliability: MTBF of 7,042,000 hours per Telcordia SR-332

Ideal solution where board space is at a premium or tighter card pitch is required

Industry standard surface-mount footprint

Available RoHS compliant

THE SIL15E-12 series are non-isolated DC/DC converters packaged in a single-in-line footprint giving designers a cost effective solution for conversion from a 10V to 14V input to output voltages of 0.8V to 3.63V. The SIL15E-12 offers a wide outputs trim range, which allows maximum design flexibility and a pathway for future upgrades.

The SIL15E-12 is designed for applications that include distributed power, workstations, optical network and wireless applications. Implemented using state of the art surface mount technology and automated manufacturing techniques, the SIL15E-12 offers compact size and efficiencies of up to 94%

[2 YEAR WARRANTY]

Stresses in excess of the maximum ratings can cause permanent damage to the device. Operation of the device is not implied at these or any other conditions in excess of those given in the specification. Exposure to absolute maximum ratings can adversely affect device reliability.

Absolute Maximum Ratings

Characteristic	Symbol	Min	Тур	Max	Units	Notes and Conditions
Input voltage - continuous	V _{in (cont)}	-0.3		14	V DC	V _{in} (+) - V _{in} (-)
Input voltage - peak/surge	V _{surge}	-0.3		14.5	V DC	2s max, non-repetitive
Operating temperature	T _{op}	-40		85	°C	Measured at thermal reference
						points, see Note 1
Storage temperature	T _{storage}	-40		125	°C	
Output power (3.3V)	Pout (max)			49.5	W	

All specifications are typical at nominal input Vin = 12V, full load under any resistive load combination at 25°C unless otherwise stated.

Input Characteristics

Characteristic	Symbol	Min	Тур	Max	Units	Notes and Conditions
Input voltage - operating	V _{in (oper)}	10	12	14	V DC	
Input current - no load	l _{in}		70	100	mA DC	V _{in} (min) - V _{in} (max), enabled
Input current - quiescent	lin (off)		7		mA DC	Converter disabled
Inrush current (i²t)	linrush		0.1		A²μs	Complies with ETS300 132 Part 4.7 with recommended LISN
Input ripple current			60		mA rms	
Input fuse*				6	A	Slowblow/antisurge HRC recommended*

^{*}See Application Note 142 for manufacturer and part number

Turn On/Off

Characteristic	Symbol	Min	Тур	Max	Units	Notes and Conditions
Input voltage - turn on	V _{in (on)}			10	V DC	
Turn on delay - enabled,	T _{delay}		35		msec	With the enable signal asserted,
then power applied	(power)					this is the time from when the
						input voltage reaches the
						minimum specified operating
						voltage until the output voltage
						is within the total regulation
						band
Turn on delay - power	T _{delay}		35		msec	$V_{in} = V_{in}$ (nom), then enabled.
applied, then enabled	(enable)					This is the time taken until the
						output voltage is within the total
						error band
Rise time	T _{rise}		10		msec	From 10% to 90%; full resistive
	1.00					load, no external capacitance

Signal Electrical Interface

Characteristic - Signal Name	Symbol	Min	Тур	Max	Units	Notes and Conditions
At remote/control ON/OFF pin Open collector or equivalent compatible						See Notes 2 and 3 See Application Note 143 for Remote ON/OFF details
Control pin open circuit voltage	V _{ih}		0		V	l _{ih} = 0 μA; open circuit voltage
High level input current	lih			1	mA	Current flowing into control pin when pin is pulled high (max at V_{ih} - 5.5V)
High level input voltage	V _{ih}	1.6			Vin	Converter guaranteed ON when control pin is greater than V _{ih} (min) or open cct.
Acceptable high level leakage current	lih (leakage)			-10	μΑ	Acceptable leakage current from signal pin into the open collector driver (neg = from converter)
Low level input voltage	V _{il}			0.8	V	Converter guaranteed OFF when control pin is less than V _{il} (max) volts or open cct.
Low level input current	I _{il}			20	μΑ	$V_{il} = < 0.4 \text{ V}$

Reliability and Service Life

Characteristic	Symbol	Min	Тур	Max	Units	Notes and Conditions
Mean time between failure	MTBF		482,000		Hours	MIL-HDBK-217F, Vin = Vin (nom); I _{out} = I _{out} (max); ambient 25°C; ground benign environment
Mean time between failure	MTBF		7,042,000		Hours	Telcordia SR-332
Mean time between failure	MTBF	ТВА			Hours	Demonstrated. This entry will be periodically updated as the number of test hours increase

Other Specifications

Characteristic	Symbol	Min	Тур	Max	Units	Notes and Conditions
Switching frequency	F _{sw}		200		kHz	Fixed frequency
Weight			6.3		g	
Coplanarity			100		μm	Measured from seating plane

Environmental Specifications

Characteristic	Symbol	Min	Тур	Max	Units	Notes and Conditions
Thermal performance		-40		85	°C	See Note 5 and individual
						derating curves

EMC

Electromagnetic Compatibility

Phenomenon	Port	Standard	Test level	Criteria	Notes and conditions
Immunity:					
Conducted immunity		EN61000-4-6			
Radiated immunity		EN61000-4-3			
ESD	Enclosure	EN61000-4-2	6kV contact	NP	As per ETS 300 386-1 table 5
			8kV air		

Performance criteria:

NP: Normal Performance: EUT shall withstand applied test and operate within relevant limits as specified without damage.

RP: Reduced Performance: EUT shall withstand applied test. Reduced performance is permitted within specified limits, resumption to normal performance shall occur at the cessation of the test.

LFS: Loss of Function (self recovery): EUT shall withstand applied test without damage, temporary loss of function permitted during test. Unit will self recover to normal performance after test.

Referenced ETSI standards:

ETS 300 386-1 table 5 (1997): Public telecommunication network equipment, EMC requirements

ETS 300 132-2 (1996): Power supply interface at the input to telecommunication equipment: Part 2 operated by direct current (DC)

ETR 283 (1997): Transient voltages at interface A on telecommunication direct current (DC) power distributions

Safety	, Δn	enc	, Δn	nrova	lc
Jaicti			/ Ab	piova	ıs

Standard	Category
UL/cUL CSA 22.2 UL60950	File No. E174104
TÜV Product Service EN60950	Certificate No. B 02 12 382 72 035

Material Ratings

Characteristic	Notes and Conditions
Flammability rating	UL94V-0

Model Numbers

Model	Input	Output	Output Current	Typical	Max. Load
Number	Voltage	Voltage	(Max.)	Efficiency	Regulation
SIL15E-12W3V3J	10.0-14.0 Vdc	0.8-3.63 Vdc	15 A	93% @ full load	±1.0%

RoHS Compliance Ordering Information

The 'J' at the end of the part number indicates that the part is Pb-free (RoHS 6/6 compliant). TSE RoHS 5/6 (non Pb-free) compliant versions may be available on special request, please contact your local sales representative for details.

W3V3 Model

Input Characteristics

Characteristic	Symbol	Min	Тур	Max	Units	Notes and Conditions
Input current - operating	l _{in}		4.4	4.5	A DC	$V_{in} = V_{in} \text{ (nom); } I_{out} = I_{out}$ (max.); $V_{o} = V_{o} \text{ (nom)}$
Reflected ripple current	l _{in} (ripple)		120		mA rms	I _{out} = I _{out} (max.), measured without external filter
Input capacitance - internal filter	C _{input}		18.8		μF	Internal to converter
Input capacitance - external bypass	C _{bypass}	100			μF	Recommended customer added capacitance

W3V3 Model

Electrical Characteristics - O/P

Symbol	Min	Тур	Max	Units	Notes and Conditions
Vo (nom)	0.785	0.8	0.815	V DC	$V_{in} = V_{in}$ (nom); $I_{out} = I_{out}$ (nom)
V _o		3		%	For all line, static load and temperature until end of life
			1	%	I _{out} = I _{out} (nom); V _{in} (min) to V _{in} (max)
			1	%	V _{in} = V _{in} (nom); I _{out} (min) to I _{out} (max)
l _{out}	0		15	A DC	
I _{sc}		10	20	A rms	Continuous, unit auto recovers from short, V _O < 100mV
V _{p-p} V _{rms}			80 25	mV pk-pk mV rms	Measurement bandwidth: 20MHz. See Application Note 142 for measurement set-up details
	Vo (nom) Vo Iout Isc Vp-p	Vo (nom) 0.785 Vo Iout 0 Isc Vp-p	Vo (nom) 0.785 0.8 Vo 0 3 Iout Isc 10	Vo (nom) 0.785 0.8 0.815 Vo 3 1 Indicated a control of the control of th	Vo (nom) 0.785 0.8 0.815 V DC Vo 3 % 1 % 1 % Iout Isc 10 20 A rms Vp-p 80 mV pk-pk

W3V3 Model

Electrical Characteristics - O/P

Characteristic	Symbol	Min	Тур	Max	Units	Notes and Conditions
Load transient response - peak deviation	V _{dynamic}		100		mV	Peak deviation for 50% to 75% step load, di/dt = 100 mA/µsec. Measurement taken with no external capacitors
Load transient response - recovery	T _{recovery}		100		μsec	Settling time to within 1% of output set point voltage for 50% to 75% step load. Measurement taken with no external capacitors
External load capacitance	C _{ext}	0		10,000	μF	

W3V3 Model

Protection and Control Features

Characteristic	Symbol	Min	Тур	Мах	Units	Notes and Conditions
Allowable output voltage		0.8		3.63	V	Trim up. Note that the maximum output power is still 49.5W. De-rate the maximum output current accordingly
Open sense voltage				10	%	

W3V3 Model

Efficiency

/						
Characteristic	Symbol	Min	Тур	Max	Units	Notes and Conditions
Efficiency	η	92	93		%	$I_{out} = 100\% I_{out}$ (max), $V_{in} = V_{in}$ (nom)
Efficiency	η	92	94		%	$I_{out} = 50\% I_{out}$ (max), $V_{in} = V_{in}$ (nom)

W3V3 Model

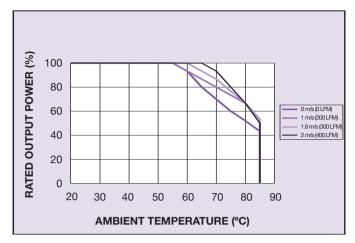


Figure 1: Derating Curve with V_{in} = 12V and No Trim (Vout = 0.8V)

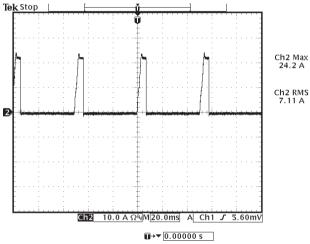


Figure 3: Short Circuit Characteristic (Channel 2: Is/c)

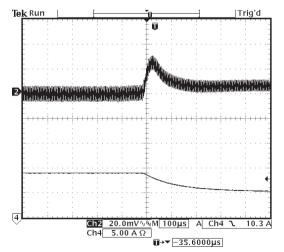


Figure 5: Typical Transient Response 75% - 50% Step Load Change (Channel 2: Vo, Channel 4: Io)

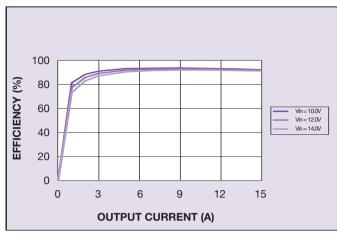


Figure 2: Efficiency vs Load

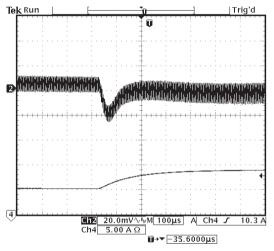


Figure 4: Typical Transient Response 50% - 75% Step Load Change (Channel 2: Vo, Channel 4: Io)

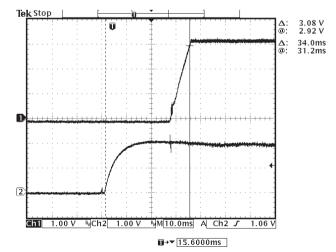


Figure 6: Typical Power-up Characteristic (Channel 1: Vin, Channel 2: Vo)

W3V3 Model

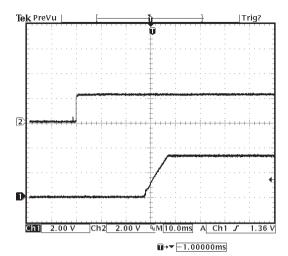


Figure 7: Control On/Off Characteristic (Channel 1: Vo, Channel 2: Remote ON/OFF)

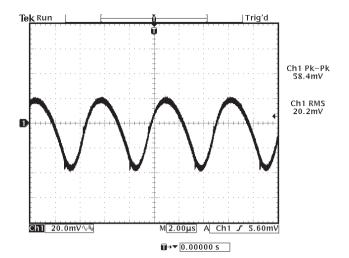
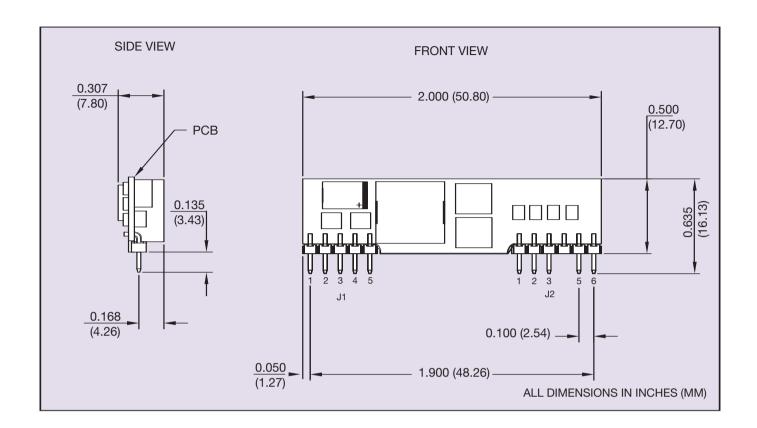



Figure 8: Typical Ripple and Noise Vin = 12V, Vout = 3V3 and lout = 15A (Channel 1: Vo)

Pin Connections					
Pin No.	Function				
J1-1	+Vout				
J1-2	+Vout				
J1-3	Remote Sense (+)				
J1-4	+Vout				
J1-5	Ground				
J2-1	Ground				
J2-2	+Vin				
J2-3	+Vin				
J2-4	No Pin				
J2-5	Trim				
J2-6	Remote ON/OFF				

Figure 9: Mechanical Drawing and Pinout Table

Note 1

Thermal reference is defined as the highest temperature measured at any one of the specified thermal reference points. See Figure 10: Thermal reference points.

Note 2

The Remote ON/OFF pin is referenced to ground.

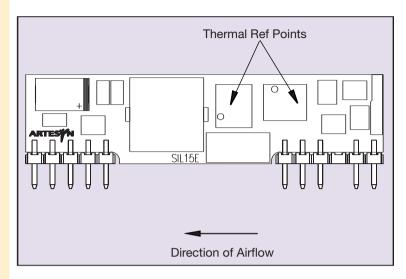
Note 3

The SIL15E-12 features an 'Active High' Remote ON/OFF operation. If not using the Remote ON/OFF pin, leave the pin open (the converter will be on). The Remote ON/OFF pin is referenced to ground.

The following conditions apply for the SIL15E:

Converter Operation Unit is ON Unit is OFF Configuration Remote pin open circuit
Remote pin pulled low [Von/off <.8V]
Remote pin pulled high [Von/off >1.6V]
Unit is ON

A an 'Active Low' Remote ON/OFF version is also possible with this converter. Please consult the factory for details.


Note 4

Thermal reference set up: Unit mounted on an edge card test board 203mm x 190mm. Test board mounted vertically. For test details and recommended set-up see Application Note 142.

Note 5

Max 55°C for full load in still air. See Application Note 142 for a detailed thermal de-rating.

CAUTION: Hazardous internal voltages and high temperatures. Ensure that unit is accessible only to trained personnel. The user must provide the recommended fusing in order to comply with safety approvals.

Figure 10: Thermal Reference Points

NORTH AMERICA

e-mail: sales us@artesvn.com

☎ 800 769 7274 **☎**+508 628 5600

e-mail: sales.europe@artesyn.com

☎+353 24 93130

AUSTRIA ☎+43 1 80150

FAR EAST LOCATIONS
e-mail: sales asia@artesyn.com

★+852 2699 2868

Longform Datasheet © Artesyn Technologies® 2003
The information and specifications contained in this datasheet are believed to be correct at time of publication. However, Artesyn Technologies accepts no responsibility for consequences arising from printing errors or inaccuracies. Specifications are subject to change without notice. No rights under any patent accompany the sale of any such product(s) or information contained herein.