

ARTESYN LPS360-M SERIES

360 Watts (forced air) 240 Watts (convection)

PRODUCT DESCRIPTION

Advanced Energy's Artesyn LPS360-M series power supply features a universal 90 to 264Vac input and also could operate from 120Vdc to 300Vdc input. The power supply produces a tightly regulated main output, together with an 12Vdc fan output. The main output can deliver up to 240W continuously with convection cooling, or up to 360W continuously with 400LFM forced air cooling. The 12V and 24V output models could be adjusted over the range +15%/-0% over nominal set output voltage. The 15V and 48V output models could be adjusted over the range +10%/-5% over nominal set output voltage. The 36V output models could be adjusted over the range +0%/-15% over nominal set output voltage. Remote sense facilities are provided to compensate for a drop of up to 0.5V between the output terminals and the load.

SPECIAL FEATURES

- Medical and ITE safeties
- Active power factor correction
- 3" x 5" footprint
- Less than 1U high
- EN61000-3-2 compliant
- Remote sense
- Power fail
- Adjustable main output
- Level B Conducted EMI Class I or Class II inputs
- Overvoltage protection
- Overload protection
- Thermal overload protection
- 12V Fan output
- LPX200 enclosure kit available

- 5V Standby output
- Remote Inhibit
- Digital I2C interface
- Class I and II approved
- Dual AC fuses
- Suitable for BF Type applications

SAFETY

- TUV 62368 / 60601-1
- UL
- CB
- CE
- EMC

62368 / 60601-1

Mark for LVD and

Certificate and report

CCC Approval

AT A GLANCE

Total Power

240-360 Watts

Input Voltage

90 to 264 Vac

of Outputs

Single

Model Numbers

Standard	Output Voltage	Minimum Load	Maximum Load Convection Cooling	Maximum Load Forced Air 400LFM	Peak Load ¹
LPS363-M	12V	0A	20A	30A	39A
LPS364-M	15V	0A	16A	24A	31A
LPS365-M	24V	0A	10A	15A	19.5A
LPS366-M	36V	0A	6.25A ²	11.25A ²	14.62A
LPS368-M	48V	0A	5A	7.5A	9.75A

Note 1 - Peak current lasting <3 seconds.

Note 2 - LPS366-M is limited to the lower of the applicable power rating or current rating, which results in lowest power.

Options

- 1. Enclosure Kit: LPX200
- 2. The AE Connector Kit for J3, J4, J5, J6: 70-841-029
- 3. The AE Digital connector kit: 73-769-005 (Including 73-841-030 and 73-769-001 per below)
- 4. I2C Mating Connector with cable: 73-841-030
- 5. USB to I2C Adapter with USB cable: 73-769-001

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings								
Parameter	Model	Symbol	Min	Тур	Max	Unit		
Input Voltage AC continuous operation DC continuous operation	All Models All Models	V _{IN,AC} V _{IN,DC}	90 120	- -	264 300	Vac Vdc		
Maximum Output Power (Main + Fan) Convection continuous operation	All Models	P _{O,maxCC}	-	-	240	W		
Maximum Output Power (Main + Fan) Force air continuous operation – 400LFM	All Models	P _{O,maxFA}	-	-	360	W		
Isolation Voltage Input to outputs Input to safety ground Main output to safety ground	All Models All Models All Models		- - -	- - -	4000 1500 1500	Vac Vac Vac		
Ambient Operating Temperature	All Models	T _A	-20	-	+70 ¹	°C		
Cold Start-up Temperature	All Models	T _{ST}	-30/-40 ²	-	-	°C		
Storage Temperature	All Models	T _{STG}	-40	-	+85	°C		
Humidity (non-condensing) Operating Non-operating	All Models All Models		10 10	- -	90 95	%		
Altitude Operating Non-operating	All Models All Models		-200 -300	- -	5,000 16,000	Meters Meters		

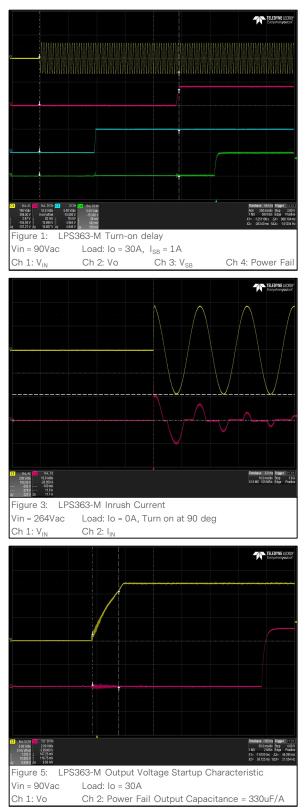
Note 1 - Derate each output at 2.5% per degree C from 50°C to 70°C.

Note 2 - -40°C startup if Standby output < 1A (any valid load on main output); -30°C startup if Standby output > 1A (any valid load on main output).

Input Specifications

Parameter	Condition	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, AC	All	V _{IN,AC}	90	115/230	264	Vac
Input AC Frequency	All	f _{IN,AC}	47	50/60	63	Hz
Operating Input Voltage, DC	All	V _{IN,DC}	120	-	300	Vdc
Maximum Input Current ($I_0 = I_{0,maxFA}, I_{SB} = I_{SB,maxFA}$)	V _{IN,AC} = 90Vac	I _{IN,max}	-	-	5	A _{PK}
No Load Input Current ($V_O = ON$, $I_O = 0$, $I_{FAN} = 0$)	V _{IN,AC} = 90Vac V _{IN,AC} = 264Vac	I _{IN,no-load}	-	-	100 250	mA
No Load Input Power ($V_O = ON$, $I_O = 0$, $I_{FAN} = 0$)	V _{IN,AC} = 115/230Vac	P _{IN,no-load}	-	-	2.5	W
Harmonic Line Currents	All	THD		Per EN61	000-3-2	•
Power Factor	$I_{O} = I_{O,maxFA}$ $V_{IN,AC} = 115Vac$	PF	-	0.99	-	
Startup Surge Current (Inrush) @ 25 ^o C	V _{IN,AC} = 230Vac	I _{IN,surge}	-	-	50	A _{PK}
Input Fuse	Internal, L and N 500Vdc/500Vac		-	-	8	A
Input AC Low Line Start-up Voltage	$I_{O} = I_{O,maxFA}$	V _{IN,AC-start}	84	-	89	Vac
Input AC Undervoltage Lockout Voltage	$I_{O} = I_{O,maxFA}$	V _{IN,AC-stop}	70	-	80	Vac
Input DC Low Line Start-up Voltage	$I_{O} = I_{O,maxFA}$	V _{IN,DC-start}	118	-	125	Vdc
Input DC Undervoltage Lockout Voltage	$I_{O} = I_{O,maxFA}$	V _{IN,DC-stop}	110	-	115	Vdc
PFC Switching Frequency	All	f _{SW,PFC}	-	72	-	KHz
Efficiency @ 25 ^o C	$V_{IN,AC}$ = 230Vac $I_O = I_{O,maxFA}$	η	-	93	-	%
	$V_{IN,AC}$ = 220Vac P_O = 240W	t _{Hold-Up}	20	-	-	mSec
Hold Up Time	V _{IN,AC} = 220Vac P _O = 360W	t _{Hold-Up}	12	-	-	mSec
Turn On Delay	$V_{IN,AC} = 90Vac$ $P_{O} = P_{O,max}$	t _{Turn-On}	-	-	2	Sec
Lookago Ourront to opfatu ground	(V _{IN} = 132Vac, f _{IN,AC} = 50/60 Hz)	_{IN,leakage}	-	-	150	uA
Leakage Current to safety ground	$(V_{IN} = 264Vac, f_{IN,AC} = 50/60 Hz)$	I _{IN,leakage}	-	-	300	uA
System Stability Phase Margin Gain Margin	330µF/A Capacitive Load		45 10		-	Ø dB

Output Specifications


Table 3. Output Specificatio							
Parameter		Condition	Symbol	Min	Тур	Max	Unit
		Inclusive of setpoint, line,	%V _O	-2.0	-	+2.0	%
Output Regulation		load temperature change, warm-up drift and cross	%V _{SB}	-5.0	-	+5.0	%
		regulation	$%V_{FAN}$	-5.0	-	+5.0	%
Output Adjust Range ¹	LPS363-M LPS364-M LPS365-M LPS366-M LPS368-M	I _O = 0	%V _o	-0 -5 -0 -15 -5		+15 +10 +15 +0 +10	%
LPS363- LPS364- LPS365- LPS366- LPS366- LPS368- LPS368-		Measure with a 0.1μF ceramic capacitor in parallel with a 10μF	Vo	- - - -		120 150 240 360 480	mV _{PK-PK}
		tantalum capacitor	V _{SB}	-	-	50	mV _{PK-PK}
	All Models		V _{FAN}	-	-	120	mV _{PK-PK}
Convection Output Current, continuous	LPS363-M LPS364-M LPS365-M LPS366-M LPS368-M	Convection cooling	I _{O,maxCC}	- - - -		20 16 10 6.25 5	A
			I _{SB,maxCC}	-	-	1	А
	All Models		I _{FAN,maxCC}	-	-	0.5	А
Force Air Output Current, continuous		400 LFM force air	I _{O,maxFA}	- - - -		30 24 15 11.25 7.5	A
			I _{SB,maxFA}	-	-	2	А
	All Models		I _{FAN,maxFA}	-	-	1	А
Output Current, peak	LPS363-M LPS364-M LPS365-M LPS366-M LPS368-M	Maximum duration of 30 seconds with maximum duty cycle of 10%	I _{O,peak}	- - -	- - -	39 31 19.5 14.62 9.75	A
V _o Turn On Overshoot ²	All Models	I _O = 0, I _{SB} =0, I _{FAN} = 0	Vo	-	-	3	%V
	LPS363-M	50% (50% to 100% of	±%V ₀	-	-	3	%
V _O Dynamic Response - Peak Deviation	Other Models	I _{O,maxFA}) load change Slew rate = 1A/μS Output capacitance = 100μF/A	±%V _o	-	-	4	%

Note 1 - The adjust pot shown on page 18. Note 2 - The worst case overshoot is less than $3\%V_o$ or 150mV.

Output Specifications

Table 3. Output Specifications Con't							
Parameter	Condition	Symbol	Min	Тур	Max	Unit	
V _o Dynamic Response - Setting Time	50% (50% to 100% of $I_{O,maxFA}$) load change Slew rate = 1A/µs Output capacitance = 100µF/A	ts	-	-	500	μSec	
Maximum Convection Output Power, continuous	Main output + Fan output + Standby output	P _{O,maxCC}	-	-	240	W	
Maximum Force air Output Power, continuous	Main output + Fan output + Standby output, 400LFM	P _{O,maxFA}	-	-	360	W	
V _O Capacitive Load	Start up	-	0	-	330	μF/A	
V _O Long Term Stability	Max change over 24 hours after thermal equilibrium (30 mins)	±%V _o	-	-	1.0	%	
V _o Over Voltage Protection	Latch off (AC recycle to reset)	%V _o	115	-	150	%	
V _O Over Current Protection	All	%I ₀	110	-	160	%	
Over Temperature Protection	All		Auto Recovery		ry		
Short Circuit Protection	All		Auto Recovery				
DCDC Switching Frequency	All	f _{SW,DC-DC}	70	-	130	KHz	
Remote Sense, + and -	Maximum compensation at each output line	V _{SENSE}	-	-	500	mV	

LPS363-M Performance Curves

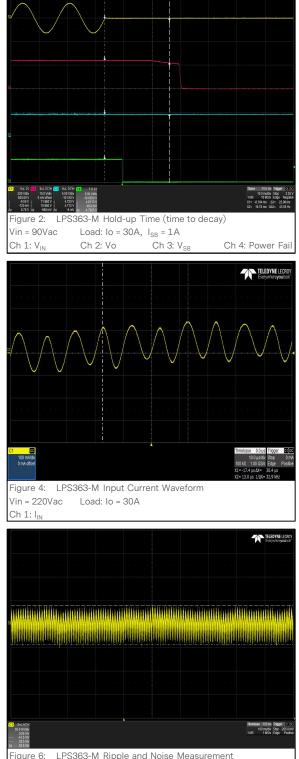
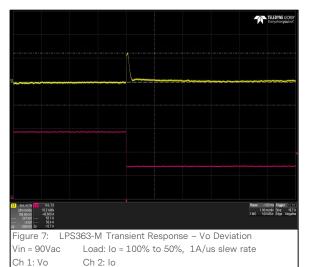
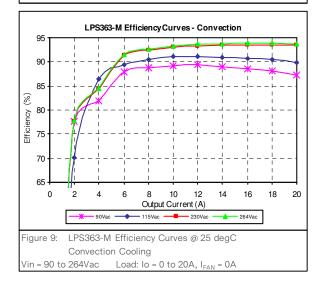




Figure 6: LPS363-M Ripple and Noise Measurement Vin = 115Vac Load: Io = 30A Ch 1: Vo

LPS363-M Performance Curves

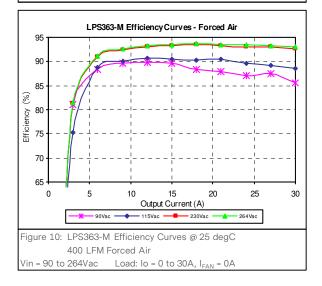
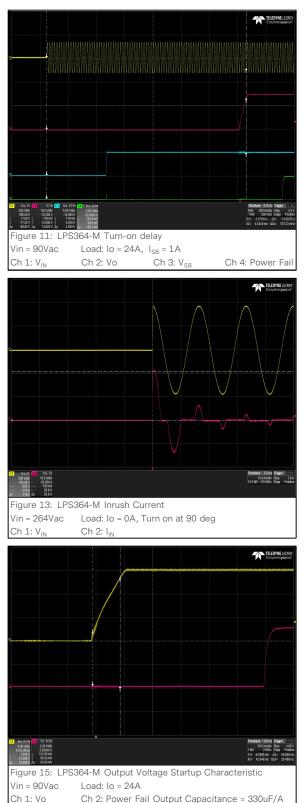
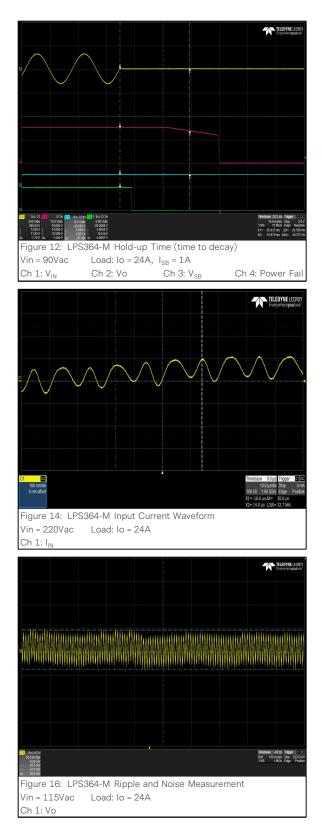





Figure 8:LPS363-MTransient Response - Vo DeviationVin = 90VacLoad: Io = 50% to 100%, 1A/us slew rateCh 1: VoCh 2: Io

LPS364-M Performance Curves

LPS364-M Performance Curves

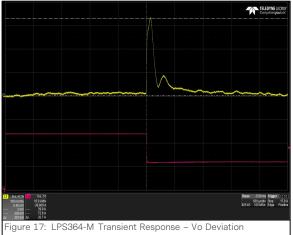
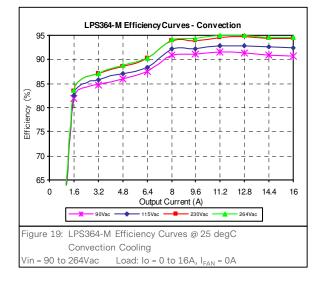
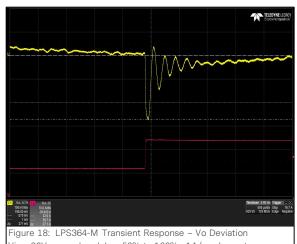
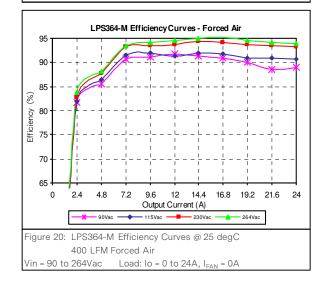
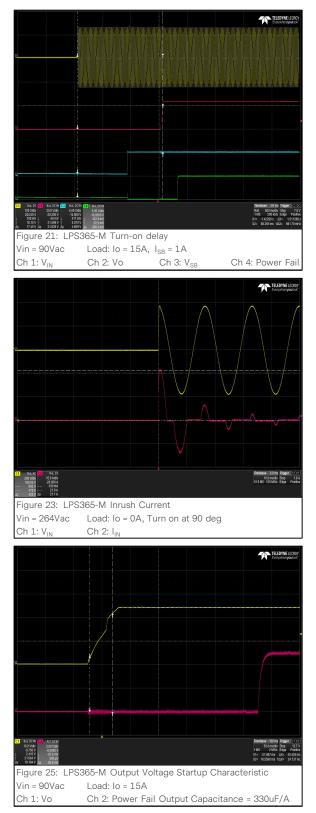
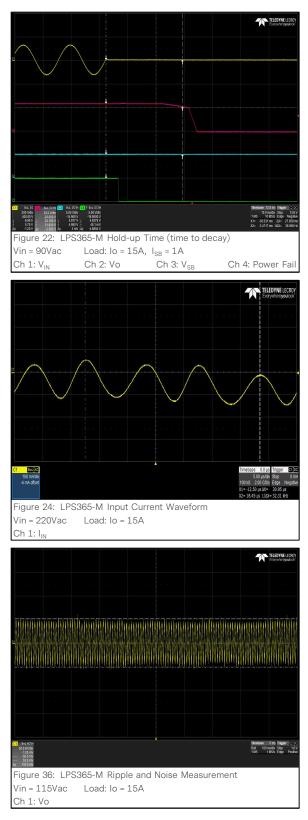




 Figure 17: LPS364-Mi Transient Response - Vo Deviation

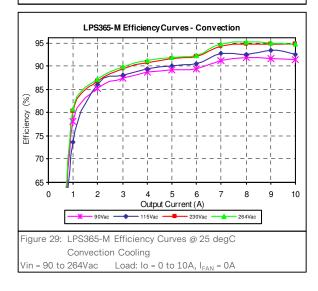

 Vin = 90Vac
 Load: lo = 100% to 50%, 1A/us slew rate

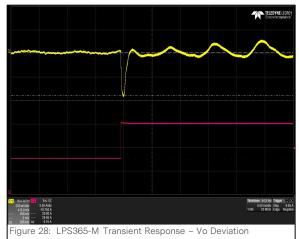
 Ch 1: Vo
 Ch 2: lo

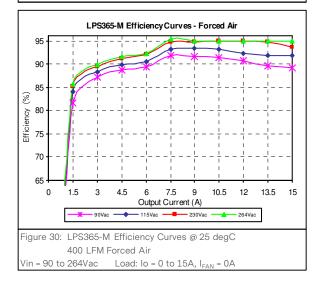


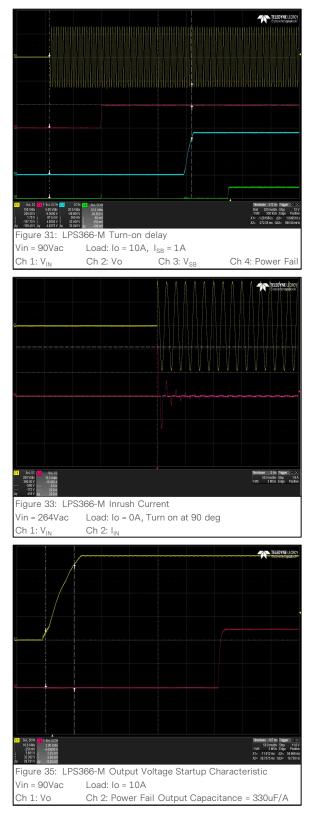

Vin = 90Vac Load: lo = 50% to 100%, 1A/us slew rate Ch 1: Vo Ch 2: lo

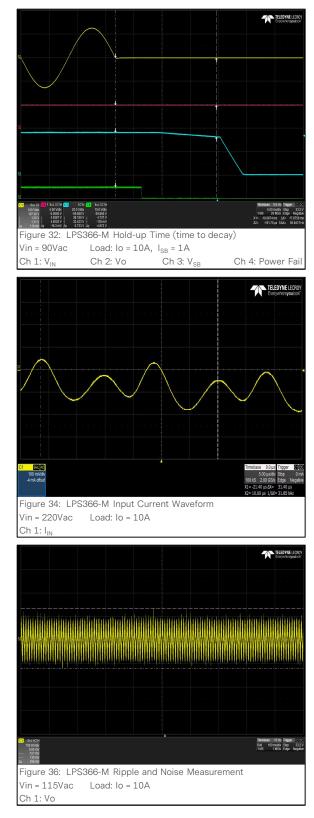
LPS365-M Performance Curves



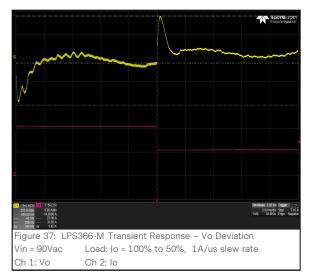


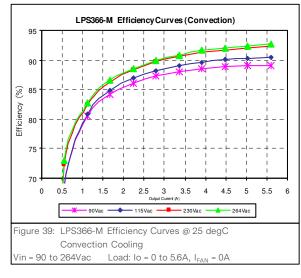

LPS365-M Performance Curves

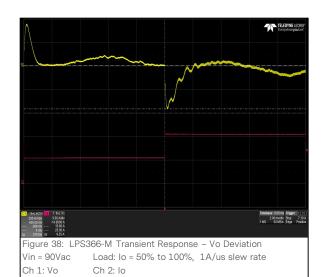


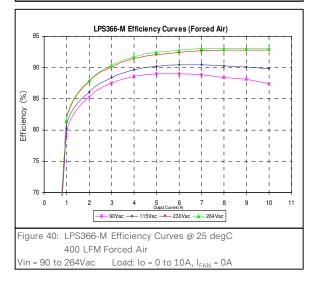


Vin = 90VacLoad: Io = 50% to 100%, 1A/us slew rateCh 1: VoCh 2: Io

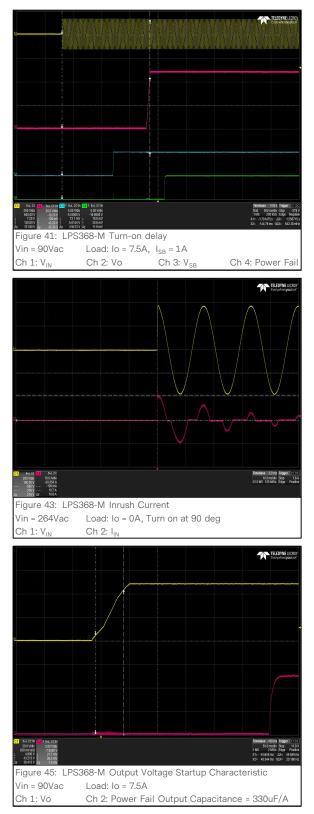

LPS366-M Performance Curves

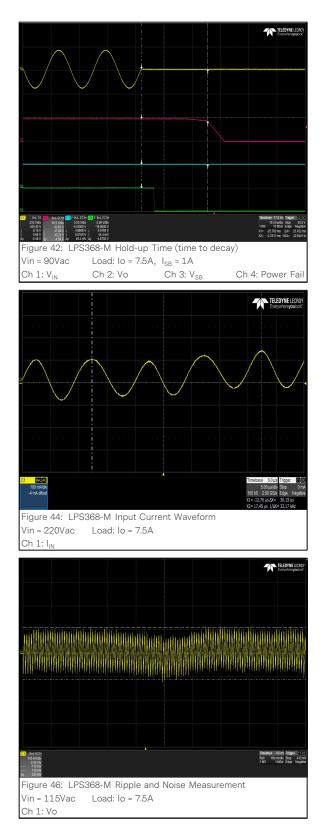


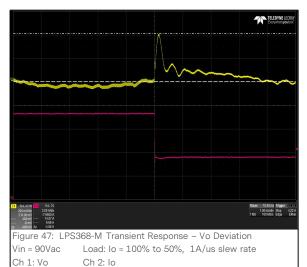


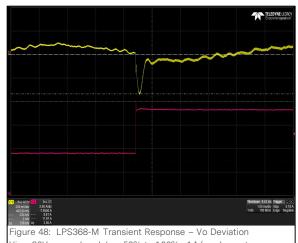


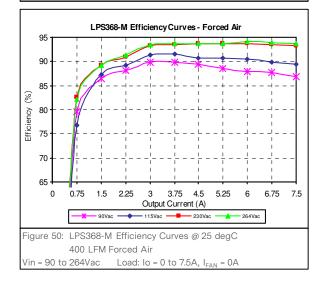
LPS366-M Performance Curves






LPS368-M Performance Curves




LPS368-M Performance Curves

LPS368-M Efficiency Curves - Convection 95 90 85 (%) Efficiency 80 75 70 65 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Output Current (A) 90Vac -- 115Vac - 230Vac -264Vac Figure 49: LPS368-M Efficiency Curves @ 25 degC Convection Cooling Vin = 90 to 264Vac Load: Io = 0 to 5.6A, $I_{FAN} = 0A$

Vin = 90Vac Load: lo = 50% to 100%, 1A/us slew rate Ch 1: Vo Ch 2: lo

Protection Function Specifications

Input Fuse

Protective Fuse is provided on the "Line" and "Neutral" side of the primary line of each power supply. 500Vdc/500Vac and 8A rated.

Over Voltage Protection (OVP)

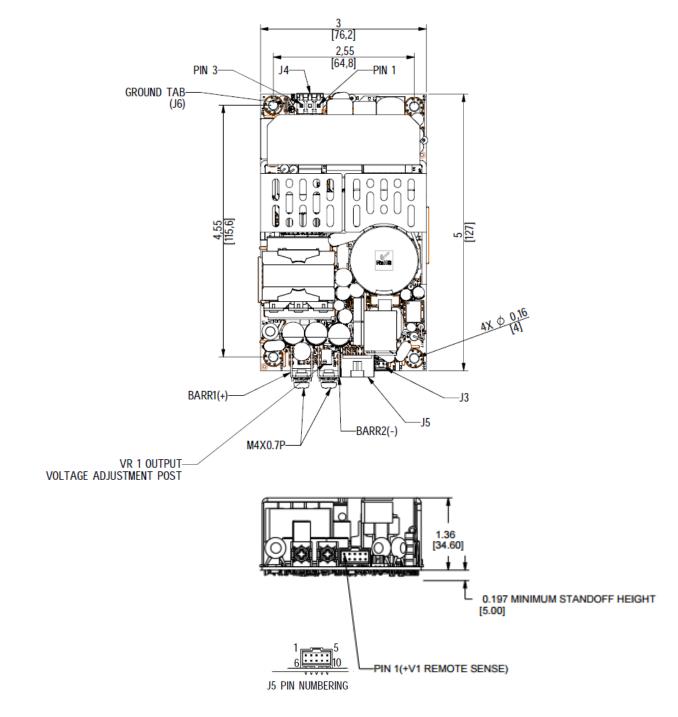
The LPS360-M series main output will latch off during output overvoltage with the AC line recycled to reset the latch.

Parameter	Min	Тур	Max	Unit
V _O Output Overvoltage	130%	/	150%	Vo

Over Current Protection (OCP)

The LPS360-M series power supply includes internal current limit circuitry to prevent damage in the event of overload or short circuit. The OCP mode is hiccup. Recovery is automatic when the overload is removed.

Parameter	Min	Тур	Max	Unit
V _o Output Overcurrent	110	/	160	%I _{O,max}


Short Circuit Protection (SCP)

The power supply will withstand a continuous short circuit with no permanent damage. The power supply will automatically restart when the short circuit is removed. A short is defines as impedance less than 50 milliohms. The SCP mode is hiccup.

Over Temperature Protection (OTP)

The power supply will shut down during over-temperature condition and return back to normal operation when the power supply is cooled down. The LPS360-M series power supply might experience over-temperature conditions during a persistent overload on the output. Overload conditions can be caused by external faults. OTP might also be entered due to a loss of control of the environmental conditions e.g. an increase in the converter's ambient temperature due to a failing fan or external cooling system etc. The latch option can be a mod, as it requires firmware update.

Mechanical Outlines (Dimensioning and Mounting Locations)

Note: All dimensions in inches (mm), tolerance is 0.02" (\pm 0.5mm)

Mechanical Outlines (Enclosure Kit) Part number for the Enclosure Kit is LPX200. (2X)M3 INSERT ٥ 10 70 70 70 5.9 [150] 822g 00000 13 3.85 2.56 [65] [98] 0.98 [25] Ŧ 0.98 [25] 1.18 [30] 4.33 [110] (2X)M3 INSERT 0 Z 0.78 [19.9] 1.08<u></u> [27.6] 3.54 [90] 0.36 [9.3] 3.14 [80] 3.15 3.75 [70] [80]

Note: All dimensions in inches (mm), tolerance is 0.02" (\pm 0.5mm)

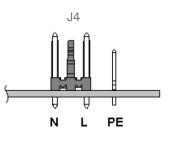
0.35

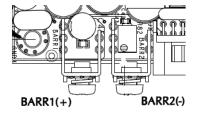
[9]

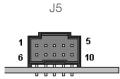
0.55

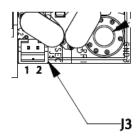
0.59 [15]

Connector Definitions


AC Input Connector – J4 Pin 1 - Neutral Pin 3 - Line Earth Ground - GND


Output Connector – Barr TB-1 – Common TB-2 – Main output


Control Signal Header – J5 Pin 1 – + Remote Sense Pin 2 – - Remote Sense Pin 3 – +5V Standby Pin 4 – +5V Standby Return Pin 5 – Power Fail Pin 6 – Forced Air Operation Pin 7 – Inhibit Pin 8 – GND Pin 9 – SDA Pin 10 – SCL


Fan Header – J3 Pin 1 – + 12V V_{FAN} Pin 2 – Fan Return¹

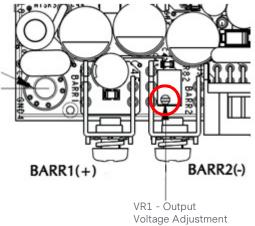
Note 1 - FAN Return is isolated from the main Output Return

Power / Signal Mating Connectors and Pin Types

Table 4. Mating Connectors for LPS360-M Series						
Reference	Mating Connector or Equivalent					
AC Input (J4)	Molex 09-50-3031 (housing) Molex 08-52-0072 (pins)					
AC GND (J6)	Molex 01-90020001					
DC Output (Barr)	Molex 19141-0058/0063 or 19099/0048 Spade lug based on Cable Ampacity/AWG					
Control Signals (J5)	Molex 90142-0010 (housing) Molex 90119-2110 (pins)					
Fan Output (J3)	Molex 51065-0200 (housing) Molex 50212-8100 (pins)					
AC Input (J4)	Molex 09-50-3031 (housing) Molex 08-52-0072 (pins)					

Note:

1.The Artesyn Connector Kit for J3, J4, J5, J6: 70-841-029


2. The Artesyn Digital connector kit: 73-769-005 (Including 73-841-030 and 73-769-001 per below)

3. I²C Mating Connector with cable: 73-841-030

4. USB to I²C Adapter with USB cable: 73-769-001

Potentiometer Definitions

VR1 - Vo Output Adjustment

Voltage Adjustme Potentiometer

Weight

The LPS360-M series weight is 0.88lb / 400g maximum.

EMC Immunity

LPS360-M series power supply is designed to meet the following EMC immunity specifications.

Table 5. Environmental Specifications						
Document	Description					
EN60601-1-2: 2001						
EN 55022	Conducted Level B and Radiated Level B (stand alone)					
IEC 61000-4-2	ESD up to 4kV contact, 8kV discharge					
IEC 61000-4-3	RFI 3V/m, criteria A					
IEC 61000-4-4	Electrical Fast Transients level 3 minimum, criteria A					
IEC 61000-4-5	Surge level 3 minimum, Criteria B.					
IEC 61000-4-6	Radio frequency common mode, Levels 3V (rms) Modulated AM 80%, 1 kHz, 150 ohm source impedance, criteria A					
IEC 61000-4-8	Power Frequency Magnetic Immunity, 1 A/m					
IEC 61000-4-11	AC Input transients Criteria > 95% dip, 0.5 period A 60% dip, 5.0 periods B (A when Vin >160 VAC) 30% dip, 25 periods A > 95% dip, 5 Sec B					
IEC 61000-3-2	Harmonic Distortion					
FCC Part 15, Subpart J, Class B	Conducted & radiated ¹ emissions					
CISPR32 (EN55032), Class B	Conducted & radiated ¹ emissions					

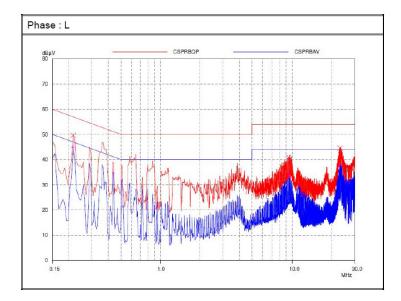
Note 1 - To be tested with system enclosure

Safety Certifications

The LPS360-M series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 6. Safety Certifications for LPS360-M Series Power Supply System							
Document	File #	Description					
ES60601-1	E182560-V4-S14	Safety of Technology Equipment					
UL-62368-1 (2 nd Edition)	E186249-A276-UL-X9	US Requirements					
CSA -C22.2 No. 601601- 1(2008)	E182560-A117-UL-X1	Medical Equipment.					
EN60601-1/A1:2013	211-500076-100	European Community Safety investigated and marketed by TUV or VDE					
TUV-SUD CB Cert	SG-MD-00527M1						
CE Mark	17131	LVD&EMC					
CCC	C-00401-Z1603QD-00987	China Approval					
IEC62368-1:2014/EN 62368-1:2014+A11:2017	E186249-A6003-CB-1	European Requirement					

LPS360-M series power supply maintains basic insulation (1xMOPP) between secondary and earth and with the enclosure floating, protection Class II safety clearance requirement will still be met.



EMI Emissions

The LPS360-M series power supply has been designed to comply with the Class B limits of EMI requirements of EN55032 (FCC Part 15) and CISPR 22 (EN55032) for emissions and relevant sections of EN61000 (IEC 61000) for immunity.

Conducted Emissions

The power supply is tested under worst case conditions or AC input voltage, frequency and load conditions. The power supply will meet the following requirements with 6 dB margin across the frequency range; when tested on a wooden bench. This will be met with the output common floating or connected to ground. Additionally for single models the positive output connected to ground (operated as a negative output).

The LPS360-M series power supply have internal EMI filters to ensure the convertor's conducted EMI levels comply with EN55032 (FCC Part 15) Class B and EN55032 (CISPR 22) Class B limits. The EMI measurements are performed with resistive loads under forced air convection at maximum rated loading.

Sample of EN55032 Conducted EMI Measurement

Note: Red Line refers to Advanced Energy Quasi Peak margin, which is 6dB below the CISPR international limit. Blue Line refers to Advanced Energy Average margin, which is 6dB below the CISPR international limit.

Conducted EMI emissions specifications of the LPS360-M series:

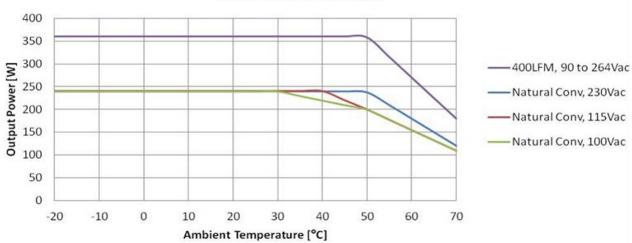
Parameter	Model	Symbol	Min	Тур	Max	Unit
FCC Part 15, class B	All	Margin	6	-	-	dB
CISPR 22 (EN55022) class B	All	Margin	6	-	-	dB

Radiated Emissions

For appliance IEC protection Class I operation, LPS360-M series power supply meet Class A and B conducted and radiated EMI with the LPX200 metal enclosure.

For appliance IEC protection Class II operation with earth Ground Tap floating, connect the primary and secondary y-caps for improved EMI response.

Operating Temperature


The LPS360-M series power supplies will start and operate within stated specifications at an ambient temperature from -20° C to 50° C under all load conditions with 400LFM of cooling air (see below derating curves for other amount of air flow and orientation. Derate output current and power by 2.5% per degree above 50°C. Maximum operating ambient temperature is 70 °C (which implies a 50% derating at max 70°C ambient).

Under convection cooling condition, the maximum output power derates linearly from 240-200 Watts. When input voltage is 100Vac, the LPS360-M series power supply will derate from 30°C. When the input voltage is 115Vac, the power supply will derate from 40°C. When the voltage is 230Vac, the power supply will derate from 50°C.

When the loading on Standby output is \leq 1A, the LPS360-M series power supply could startup at -40^oC. When the loading on Standby output is > 1A, the power supply could startup at -30^oC.

Derating Curves

Both the ambient operating temperature and the method of cooling will limit the maximum power available from the LPS360-M series power supply.

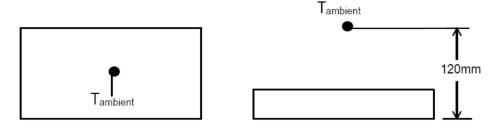
Forced Air Cooling

The LPS360-M series power supply will provide 360W output with 400LFM of forced air cooling for ambient temperature up to 50° C. Above 50° C, it will require a derating of 2.5% output power per $^{\circ}$ C for operation up to 70° C.

Forced Air Cooling set up:

Pins 6 and 8 of J5 need to be connected together

Load = 100% of forced air load (360W)


Cooling Fan: Use one cooling fan with 400LFM air flow rating blowing lengthwise or sideways.

Natural Convection Cooling

The LPS360-M series power supply will provide up to 200-240W output power under natural convection condition for ambient temperature up to 50°C. Above 50°C, it will require a derating of 2.5% output power per ^oC for operation up to 70°C.

Natural convection cooling defined as power supply unit mounting on flat surface with bottom of the power supply down and open top unrestricted setting (see diagram below). Other mounting orientation might produce different derating and should be evaluated.

For convection cooling, pin 6 of control connector J5 should be left unconnected, the LPM360-M series power supply will provide up to 240W load output.

Storage and Shipping Temperature / Humidity

The LPS360-M series power supply can be stored or shipped at temperatures between -40 °C to +85 °C and relative humidity from 10% to 95% non-condensing.

Altitude

The LPS360-M series power supply will operate within specifications at altitudes up to 5,000 meters above sea level. The power supply will not be damaged when stored at altitudes of up to 16,000 meters above sea level.

Humidity

The LPS360-M series power supply will operate within specifications when subjected to a relative humidity from 10% to 90% noncondensing. The LPS360-M series power supply can be stored in a relative humidity from 10% to 95% non-condensing.

Vibration

The LPS360-M series power supply will pass the following vibration specifications:

Non-Operating Random Vibration

Acceleration	2.7	gRMS			
Frequency Range	10-2000	Hz			
Duration	20	mins			
Direction	3 mutually perpendicular axis				
PSD Profile	FREQ 10-190 Hz 190-210 Hz 210-2000 Hz	SLOPE <u>dB/oct</u> -31.213dB/oct 	PSD <u>g²/Hz</u> 0.01 g ² /Hz 0.003 g ² /Hz		

Operating Random Vibration

Acceleration	1.0			gRMS
Frequency Range	10-500			Hz
Duration	20			mins
Direction	3 mutually perpendicular axis			
PSD Profile	FREQ 10-500 Hz	SLOPE <u>dB/oct</u>		PSD <u>g²/Hz</u> 0.002 g ² /Hz

Shock

The LPS360-M series power supply will pass the following vibration specifications

Non-Operating Half-Sine Shock

Acceleration	30	G		
Duration	18	msec		
Pulse	Half-Sine			
No. of Shock	3 shock on each of 6 faces			

Operating Half-Sine Shock

Acceleration	4	G		
Duration	22	msec		
Pulse	Half-Sine			
No. of Shock	3 shock on each of 6 faces			

AC Input (J4)

This connector supplies the AC Mains to the LPS360-M series power supply.

Pin 1 - Neutral

Pin 3 – Line

Earth Ground (J6)

This tab connector is the safety ground connection and should be connected to AC input earth ground.

GND - Earth Ground (Safety Ground)

Main Output (BARR)

These terminals provide the main output for the LPS360-M series power supply. The V_0 and the Output Return terminals are the positive and negative rails, respectively of the main output of the LPS360-M series power supply. The Main Output is electrically isolated from the Earth Ground and can be operated as a positive or negative output.

BARR-1 - Main Output+

BARR-2 - Main Output Common

Vo Output voltage adjustment

The main output of LPS363-M and LPS365-M can be adjusted by 0%~+15% from its nominal output voltage. The main output of LPS364-M and LPS368-M can be adjust by -5%~+10% from its nominal output voltage. The main output of LPS366-M can be adjusted by -15%~0% from its nominal output voltage. The adjustment potentiometer is VR1.

10-Pin header connector (J3)

The LPS360-M series power supply contains an isolated 12V output for powering a cooling fan or as an aux power source. This 12V Fan Supply is provided in a 2 pin header connector SK5.

Pin 1 – +12V Fan Output

Pin 2 – Fan Return

Control Signals (J5)

The LPS360-M series power supply contains a 10 pins control signal header providing control interface.

+Remote Sense, -Remote Sense (Remote Sensing) – (J5 – Pin 1 and Pin 2)

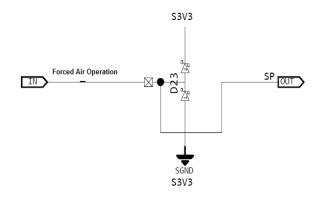
The main output of LPS360-M series power supply is equipped with a Remote Sensing capability that will compensate for a voltage drop of up to a 0.5V between the output terminals of the supply and the sensed voltage point (load). This feature is implemented by connecting the +V1 Remote Sense (pin 1) and the -V1 Remote Sense (pin 2) terminals to the positive and negative rails of the main output, respectively, at a location that is near to the load. Care should be taken in the routing of the sense lines as any noise sources or additional filtering components introduced into the voltage rail may affect the stability of the power supply. The LPS360-M series power supply will operate appropriately without the sense lines connected.

The power supply is protected against damage caused by inadvertent reverse connection of the Remote Sense lines.

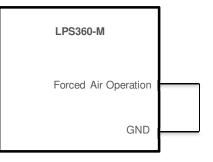
Remote sensing has no effect on the +5V Standby output and +12V V_{FAN} output.

+5V Standby Output, Standby Output Return - (J5 - Pin 3 and Pin 4)

5V Standby Output rated at 2A with forced air cooling and 1A for convection cooled. If this output is shorted it will shut down the main converter.


Forced Air Operation – (J5 – Pin 6)

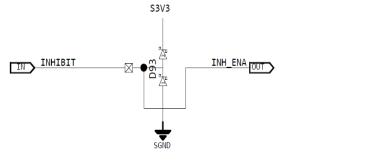
For forced air operation, connect Pin 6 to Pin 8 of J5. If these two pins are not connected, for the protection of the unit, the power is constrained to the convection rated power (200-240W).


To protect the operation of the LPS360-M, users must select the cooling method and set this pin accordingly.

For forced air cooling, this pin (pin 6) must be shorted to GND or pin 8. This sets the maximum output power to 360W. With this setting, in the event the unit does not receive the required airflow, the OTP will trigger.

For convection cooling, this pin (pin 6) must left open (default), and the maximum output power is set to 240W. Loading more than 240W under this setting might trigger OCP (over current protection).

Forced Air Operation signal circuit diagram (Inside of LPS360-M Series Power Supply)



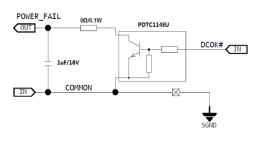
Forced Air Operation connection (Outside of LPS360-M Series Power Supply)

Inhibit – (J5 – Pin 7)

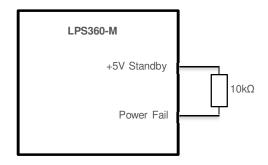
Remote inhibit will require Pin 7 of J5 to be grounded. Low voltage will also inhibit the power supply. Low is <0.8V and high is \geq 2.0V, source current 1mA maximum. Left the inhibit pin open will enable the power supply.

Inhibit signal circuit diagram (Inside of LPS360-M Series Power Supply)

LPS360-M	
Inhibit	
GND	

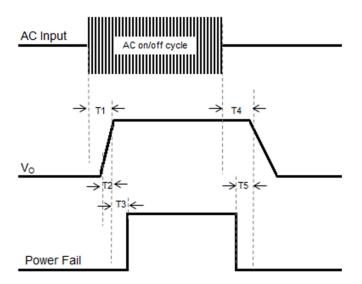

Inhibit the power supply connection (Outside of LPS360-M Series Power Supply)

SDA, SCL and GND – (J5 – Pin 8, Pin 9 and Pin 10)


Please refer to "Communication Bus Descriptions" section.

Power Fail – (J5 – Pin 5)

Power Fail is an open collector output capable of sinking 10mA maximum at 0.5Vdc. This signal is referenced to GND. Add a pullup resistor (10K) to Standby Output or other voltage rail (12V max) for the Power Fail signal.



Power Fail signal circuit diagram (Inside of LPS360-M Series Power Supply)

Power Fail signal circuit diagram (Outside of LPS360-M Series Power Supply)

Power Fail signal timing diagram

Table 7. Power Fail signal timing Specifications						
Label	Parameter		Тур	Max	Unit	
Τ1	Turn on delay - Delay from AC being applied to output voltages being within regulation with Power Fail asserted low.	-	-	2	Sec	
T2	Rise up time – total time from 10%V_0 to 90%V_0	5	-	55	mSec	
T3	Delay from $90\%V_{O}$ to Power Fail asserted high.	100	-	500	mSec	
T4	Hold up time - time all output voltages, including $\rm V_{SB}$, stay within regulation after loss of AC.	20	-	-	mSec	
Τ5	Delay from Power Fail de-asserted to output voltages dropping out of regulation limits.	6	-	-	mSec	

Communication Bus Descriptions

I2C Bus Signals

The LPS360-M series power supply contains a Digital I²C interface and controls functions implemented via the I²C bus. The LPS360-M series power supply I²C functionality (PMBus[™]) can be accessed via the control connector signals.

Note: PMBus[™] functionality can be accessed only when the PSU is powered-up. Guaranteed communication I²C speed is 15 to 50 KHz.

SDA, SCL (I2C Data and Clock Signals) – (J5-Pin9, J5-Pin10)

SCL: Serial clock signal; SDA: Serial data signal (bi-directional). The SCL pin and SDA pin are pulled up inside of the LPS360-M series power supply.

I²C Bus Communication Interval

The interval between two consecutive I²C communications to the power supply should be at least 50ms to ensure proper monitoring functionality.

Device Addressing

Slave device address is 0XB0.

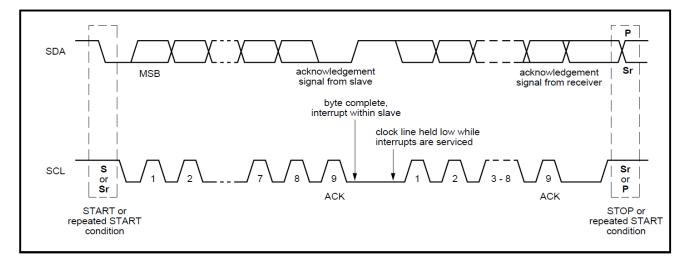
Communication Bus Descriptions

I²C Clock Synchronization

The LPS360-M series power supply might apply clock stretching. An addressed slave power supply may hold the clock line (SCL) low after receiving (or sending) a byte, indicating that it is not yet ready to process more data. The system master that is communicating with the power supply will attempt to raise the clock to transfer the next bit, but must verify that the clock line was actually raised. If the power supply is clock stretching, the clock line will still be low (because the connections are open-drain).

Clock Low Timeout

The PSU monitors the state of SDA and SCL lines. Whenever the SDA or SCL line gets stuck to a low level for more than 25 msec the PMBus interface will be reset and reinitialized after 2 msec. This will reset the internal state machine of the PMBus interface.

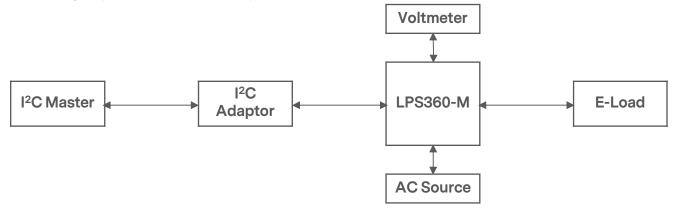

The purpose of this timeout and reset is to be able to release the bus if ever the PSU is holding one of the lines caused by signaling anomalies in the bus.

Note that the reset is only for the PMBus interface. No other PSU functionality will be affected.

Transaction Timeout

If a transaction is not completed within 100msec a transaction timeout will occur. The timeout will cause the internal state machine of the PMBus interface to reset.

This transaction timeout is particularly useful for system with multi masters. In case a master device fails in the middle of a transaction, this timeout enables the PSU to be ready to accept another transaction from another master.


PMBus[™] Specifications

The LPS360-M series power supply is compliant with the industry standard PMBus[™] protocol for monitoring and control of the power supply via the I²C interface port. The I²C Kit part number is 73-769-005.

LPS360-M Series PMBus[™] General Instructions

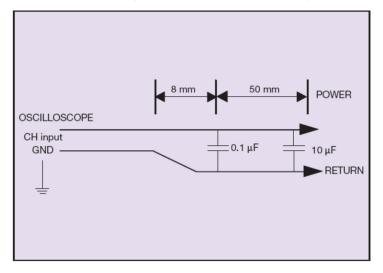
Equipment Setup

The following is typical I²C communication setup:

PMBus[™] Specifications

The LPS360-M is compliant with the industry standard PMBus[™] protocol for monitoring and control of the power supply via the I²C interface port.

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description	
78h	STATUS_BYTE	00	R	1	Bd		
79h	STATUS_WORD	0000	R	2	Bd		
8Bh	READ_VOUT	-	R	2	Linear	Returns the actual, measured voltage in Volts.	
8Ch	READ_IOUT	-	R	2	Linear	Returns the output current in amperes.	
9Ah	MFR_MODEL	-	BR	15	ASCII	Manufacturers Model number, ASCII format	
9Eh	MFR_Serial	-	BR	13	ASCII	Unit serial number, ASCII format.	
E1h	FW_SEC_VERSION	-	BR	8	ASCII		


The LPS360-M Series Supported PMBus[™] Command List:

Application Notes

Output Ripple and Noise Measurement

The setup outlined in the diagram below has been used for output voltage ripple and noise measurements on the LPS360-M series. When measuring output ripple and noise, a scope jack in parallel with a 0.1uF ceramic chip capacitor, and a 10 uF aluminum electrolytic capacitor should be used. Oscilloscope should be set to 20 MHz bandwidth for this measurement.

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	10.29.2015	First Issue	L. Lee
1.1	11.17.2015	Update the inrush current waveform	L. Lee
1.2	12.02.2015	Update the control signal details	L. Lee
1.3	12.11.2015	Update the efficiency typical data and Leakage current data	L. Lee
1.4	08.24.2016	Update the OCP part error	K. Wang
1.5	03.30.2017	Update the LPS366-M Data	L. Lee
1.6	07.25.2019	Update the OVP and T5 timing data	L. Lee
1.7	09.02.2019	Update the I2C Clock Frequency	K. Wang
1.8	11.21.2019	Update the EMC surge part	K. Wang
1.9	12.30.2020	Update the Isolation info/Update 62368 cert	L. Lee
2.0	03.11.2021	Add Fan regulation requirement	L.Lee

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.

For international contact information, visit advancedenergy.com.

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832