TECHNICAL REFERENCE NOTE

ARTESYN NPS60-M SERIES

PRODUCT DESCRIPTION

Advanced Energy's Artesyn NPS60-M series power supply features a universal 90 to 264 Vac input and also could operate from 127 to 300 Vdc input. The power supply produces a tightly regulated output, The output can deliver up to 60 W continuously with natural convection cooling (no additional rating for forced air). The output could be adjusted over the range +20%/-20% over nominal set output voltage. NPS60-M series power supply is comprehensively protected against overvoltage, over temperature and short-circuit conditions, The power supplies have a full load ambient operating temperature range of 0 °C to +50 °C without derating. Operation between 50 °C and 80 °C, the output should be derated by 2.5 percent per °C, the power supply could startup at -20 °C after a 30 minutes soak time.

SPECIAL FEATURES

- Medical and ITE safeties
- 2" x 4" footprint
- Less than 1U high
- Remote sense
- Overload and short circuit protection
- Adjustable output voltage
- High efficiency
- High MTBF
- Built-in EMI filter(CISPR 22 Class B)
- International efficiency level V, Energy Star 2.0 & CeC compliant (except NPS62-M)
- Less than 300mW no-load power consumption (Less than 500mW for NPS62-M)

- 0 °C to 80 °C
- Complies with EN61000-3-2
- UL Class I approved
- Class II approved(with Class A EMI)
- LPX100 enclosure kit available
- Dual AC fuses

SAFETY

■ TUV	62368-1/60601-1
UL	62368-1/60601-1
■ CSA	62368-1/60601-1
NEMKO	62368-1/60601-1
■ CB	Certificate and report
■ CE	Mark for LVD
■ CCC	Mark
UKCA	Mark

AT A GLANCE

Total Power

60 W

Input Voltage

90 to 264 Vac

of Outputs

Single

©2021 Advanced Energy Industries, Inc.

MODEL NUMBERS

Standard	Output Voltage	Minimum Load	Maximum Load	Peak Load ¹	Regulation ²
NPS62-M	5 V	0 A	11 A	13 A	2%
NPS63-M	12 V	0 A	5 A	5.5 A	2%
NPS63-M-0063	12 V	0 A	5 A	5.5 A	2%
NPS64-M	15 V	0 A	4 A	4.4 A	2%
NPS65-M	24 V	0 A	2.5 A	2.75 A	2%

Note 1 - Peak current lasting <15 S with a maximum 10% duty cycle. Note 2 - At 25 ^oC including initial tolerance, line voltage, load currents and output voltage adjusted to factory setting. Note 3 - Compliant to level VI efficiency.

Options

None

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings	Table 1. Absolute Maximum Ratings					
Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage AC continuous operation DC continuous operation	All Models All Models	V _{IN,AC} V _{IN,DC}	90 120		264 300	Vac Vdc
Maximum Output Power (Main + Fan) Convection continuous operation	All Models	P _{O,maxCC}	-	-	60	W
Isolation Voltage Input to outputs Input to safety ground	All Models All Models			-	4000 1800	Vac Vac
Ambient Operating Temperature	All Models	T _A	0	-	+801	оС
Cold Start-up Temperature	All Models	Τ _{ST}	-30/-40 ²	-	-	оС
Storage Temperature	All Models	T _{STG}	-40	-	+85	оС
Humidity (non-condensing) Operating Non-operating	All Models All Models		10 10	-	90 95	%
Altitude Operating Non-operating	All Models All Models		-500 -1000	-	13000 ³ 50000	feet feet

Note 1 - Derate each output at 2.5% per ^oC from 50 ^oC to 80 ^oC Note 2 - -40 ^oC startup if Standby output ≤ 1 A (any valid load on main output); -30 ^oC startup if Standby output > 1 A (any valid load on main output). Note 3 - Derating 1 ^oC per 1000 feet above 10,000 feet.

Input Specifications

Table 2. Input Specifications	Table 2. Input Specifications					
Parameter	Condition	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, AC	All	V _{IN,AC}	90	115/230	264	Vac
Input AC Frequency	All	f _{IN,AC}	47	50/60	63	Hz
Operating Input Voltage, DC	All	V _{IN,DC}	127	-	300	Vdc
Maximum Input Current	V _{IN,AC} = 90 Vac	I _{IN,max}	-	-	1.5	А
No Load Input Power ($V_O = ON$, $I_O = 0$, $I_{FAN} = 0$)	All	P _{IN,no-load}	-	-	0.50 0.21 (-006)	W W
Harmonic Line Currents	All	THD	Per	EN61000-3	-2(for Class	s D)
Startup Surge Current (Inrush) @ 25 ^o C	V _{IN,AC} = 230 Vac	I _{IN,surge}	-	-	50	A _{PK}
Input Fuse	Internal, L and N 250 Vdc/250 Vac		-	-	2.5	А
Input AC Low Line Start-up Voltage	$I_{O} = I_{O,max}$	V _{IN,AC-start}	60	-	85	Vac
Input AC Undervoltage Lockout Voltage	$I_{O} = I_{O,max}$	V _{IN,AC-stop}	55	-	75	Vac
Input DC Low Line Start-up Voltage	$I_{O} = I_{O,max}$	V _{IN,DC-start}	70	-	85	Vdc
Input DC Undervoltage Lockout Voltage	$I_{O} = I_{O,max}$	V _{IN,DC-stop}	50	-	70	Vdc
Efficiency @ 25 °C	$V_{IN,AC} = 230 \text{ Vac}$ $I_0 = I_{O,max}$	η	-	87 80 (NPS62- M)	-	%
Hold Up Time	V _{IN,AC} = 115 Vac	t _{Hold-Up}	10	-	-	mS
Turn On Delay	$V_{IN,AC} = 90$ Vac $P_O = P_{O,max}$	t _{Turn-On}	-	-	2	S
Leakage Current to safety ground	(V _{IN} = 264 Vac, f _{IN,AC} = 50/60 Hz)	_{IN,leakage}	-	-	275	uA
System Stability Phase Margin Gain Margin	330 μF/A Capacitive Load		45 10		-	Ø dB

Output Specifications

Table 3. Output Specifications							
Parameter		Condition	Symbol	Min	Тур	Max	Unit
Output Regulation		Inclusive of setpoint, line, load temperature change, warm-up drift and cross regulation	%V _o	-2.0	_	+2.0	%
Output Adjust Range ¹		I _O = 0	%V _O	-20	-	+20	%
Output Ripple, pk-pk	NPS62-M NPS63-M NPS63-M-006 NPS64-M NPS65-M	Measure with a 0.1 μF ceramic capacitor in parallel with a 10 μF tantalum capacitor	Vo			50 120 120 150 240	mV _{PK-PK}
Output Current, continuous	NPS62-M NPS63-M NPS63-M-006 NPS64-M NPS65-M	Convection cooling	I _{O,maxCC}			11.0 5.0 5.0 4.0 2.5	А
Output Current, peak ²	NPS62-M NPS63-M NPS63-M-006 NPS64-M NPS65-M	Maximum duration of 30 S with maximum duty cycle of 10%	_{O,peak}			13.0 5.5 5.5 4.4 2.75	A
V _o Turn On Overshoot ³	All Models	I _O = 0, I _{SB} = 0, I _{FAN} = 0	%V _o	-	-	3	V
V _o Dynamic Response - Peak Deviation	NPS62-M NPS63-M NPS63-M-006 NPS64-M NPS65-M	50% (50% to 100% of $I_{O,maxFA}$) load change Slew rate = 1 A/µS Output capacitance = 100 µF/A	±%V ₀			5 5 2 2	%
V _o Dynamic Response - Settin	g Time	50% (50% to 100% of $I_{O,maxFA}$) load change Slew rate = 1 A/µs Output capacitance = 100 µF/A	t _s	-	-	500	μS
Maximum Convection Output	Power	Main output	P _{O,maxCC}	I	-	60	W
V _O Capacitive Load		Start up	-	0	-	330	μF/A
V _O Long Term Stability	NPS62-M NPS63-M NPS63-M-006 NPS64-M NPS65-M	Max change over 24 hours after thermal equilibrium (30 mins)	±%V ₀			0.1 1.0 1.0 1.0 1.0	%
DCDC Switching Frequency		All	f _{SW,DC-DC}	70	-	100	KHz
Remote Sense, + and -		Maximum compensation at each output line	V _{SENSE}	-	-	400	mV

Note 1 - The adjust pot shown on page 21. Note 2 - Peak current lasting<15 S with a maximum 10% duty cycle. Note 3 - The worst case overshoot is less than $3\%V_o$ or 150 mV.

NPS62-M Performance Curves

NPS62-M Performance Curves

Vin = 230 Vac Load: lo = 100% to 50%, 1 A/us slew rate Ch 1: Vo Ch 2: lo

NPS63-M Performance Curves

NPS63-M Performance Curves

Figure 16: NPS63-M Transient Response – Vo DeviationVin = 230 VacLoad: Io = 100% to 50%, 1 A/us slew rateCh 1: VoCh 2: Io

NPS64-M Performance Curves

NPS64-M Performance Curves

Vin = 230 VacLoad: Io = 100% to 50%, 1 A/us slew rateCh 1: VoCh 2: Io

NPS65-M Performance Curves

NPS65-M Performance Curves

Figure 34: NPS65-M Transient Response – Vo DeviationVin = 230 VacLoad: Io = 100% to 50%, 1 A/us slew rateCh 1: VoCh 2: Io

Protection Function Specifications

Input Fuse

Protective fuse is provided on the "Line" and "Neutral" side of the primary line of each power supply. 250 V and 2.5 A rated.

Over Voltage Protection (OVP)

The power supply main Vo output will latch off during output overvoltage with the AC line recycled to reset the latch.

Parameter	Min	Тур	Max	Unit
V _o Output Overvoltage	130%	/	150%	Vo

Over Current Protection (OCP)

The NPS60-M series power supply includes internal current limit circuitry to prevent damage in the event of overload or short circuit. The OCP mode is hiccup. Recovery is automatic when the overload is removed.

NPS62-M

Parameter	Min	Тур	Max	Unit
V _o Output Overcurrent	26.4	/	38.4	A

NPS63-M

Parameter	Min	Тур	Мах	Unit
V _o Output Overcurrent	13.7	/	18.0	A

NPS64-M

Parameter	Min	Тур	Max	Unit
V _o Output Overcurrent	11.0	/	16.0	A

NPS65-M

Parameter	Min	Тур	Мах	Unit
V _O Output Overcurrent	6.9	/	10.0	A

NPS69-M

Parameter	Min	Тур	Мах	Unit
V _o Output Overcurrent	3.4	/	5.0	A

Short Circuit Protection (SCP)

The power supply will withstand a continuous short circuit with no permanent damage. The power supply will automatically restart when the short circuit is removed. A short is defines as impedance less than 50 milliohms.

Mechanical Outlines (Dimensioning and Mounting Locations)

^{0.197&}quot; (5.0) MINIMUM STANDOFF HEIGHT

- All dimensions in inches [mm], tolerance is +/-0.02" [0.5 mm]

Mechanical Outlines (Enclosure Kit)

Part number for the Enclosure Kit is LPX100

- All dimensions in inches [mm], tolerance is +/-0.02" [0.5 mm]

Connector Definitions

AC Input Connector – SK1

Pin 1 - Neutral Pin 3 - Line

GND - CN1

Output Connector – SK2

Pin 1 - +5V

- Pin 2 +5V
- Pin 3 Output Return
- Pin 4 Output Return
- Pin 5 -Sense
- Pin 6 +Sense

Power / Signal Mating Connectors and Pin Types

Table 4. Mating Connectors for NPS60-M Series		
Reference	Mating Connector or Equivalent	
AC Input (SK1)	Molex 09-50-8031 (USA) 09-93-0300 (UK) PINS: 08-52-0113	
AC GND (CN1)	Molex 01-90020001	
DC Output (SK2)	Molex 09-50-8061 (USA) 09-93-0600 (UK) PINS: 08-52-0113	

NPS60-M connector kit can be ordered separately. Connector Kit #: 70-841-006.

Potentiometer Definitions

VR1 – Main output voltage adjustment

Weight

The NPS60-M series weight is 0.26 lb / 118 g maximum.

EMC Immunity

NPS60-M series power supply is designed to meet the following EMC immunity specifications.

Table 5. Environmental Specifications			
Document	Description		
EN60601-1-2: 2001	FCC Rules and Regulations Part 15, Subpart J, Class B, for conducted and Class B with a ground plane for radiated interference (with 6 dB margin). VCCI Class II		
EN55032	Conducted Level B and Radiated Level B (stand alone)		
IEC 61000-4-2	ESD up to 4 kV contact, 8 kV discharge		
IEC 61000-4-3	RFI 3 V/m, criteria A		
IEC 61000-4-4	Electrical Fast Transients level 3 minimum		
IEC 61000-4-5	Surge level 3 minimum		
IEC 61000-4-6	Radio frequency common mode, Levels 3 V (rms) Modulated AM 80%, 1 kHz, 150 ohm source impedance		
IEC 61000-4-8	Power Frequency Magnetic Immunity, 1 A/m		
IEC 61000-4-11	AC Input transients ¹ Criteria > 95% dip, 0.5 period A 60% dip, 5.0 periods B (A when Vin >160 Vac) 30% dip, 25 periods A > 95% dip, 5 S B		
ANSI 62.4	Ringwave Test 3 KV at 200 A		

Note 1 - For conditions where Criteria A cannot be met, characterize the boundary condition(Line and/or Load) where Criteria A becomes Criteria B.

Safety Certifications

The NPS60-M series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 6. Safety Certifications for NPS60-M Series Power Supply System			
Standard	Description		
CSA-C22.2	Safety of Medical Equipment		
EN60601-1	European Community Safety investigated and marketed by TUV or VDE		
UL62368-1	US and Canada Requirements		
UL60601-1	US and Canada Medical Equipment.		
CSA C22.2 No. 62368-1	Safety of information Technology Equipment, including electrical business equipment		
UKCA Mark	European Requirements		
CE Mark	LVD		

EMI Emissions

The NPS60-M series has been designed to comply with the Class B limits of EMI requirements of EN55022 (FCC Part 15) and CISPR 22 (EN55022) for emissions and relevant sections of EN61000 (IEC 61000) for immunity.

The unit is enclosed inside a metal box, tested at 60 W using resistive load with cooling fan.

Conducted Emissions

The power supply is tested under worst case conditions or AC input voltage, frequency and load conditions. The power supply will meet the following requirements with 6 dB margin across the frequency range; when tested on a wooden bench. This will be met with the output common floating or connected to ground. Additionally for single models the positive output connected to ground (operated as a negative output).

Conducted EMI emissions specifications of the NPS60-M series:

Parameter	Model	Symbol	Min	Тур	Max	Unit
FCC Part 15, Class B	All	Margin	-	-	6	dB
CISPR 22 (EN55022) Class B	All	Margin	-	-	6	dB

Radiated Emissions

For appliance IEC protection Class I operation, NPS60-M series power supply meet Class A and B conducted and radiated EMI with the LPX100 metal enclosure.

For appliance IEC protection Class II operation with earth Ground Tap floating, connect the primary and secondary y-caps for improved EMI response

Operating Temperature

The NPS60-M series power supplies will start and operate within stated specifications at an ambient temperature from -20 °C to 50 °C under all load conditions. Derate output current and power by 2.5% per degree above 50 °C. Maximum operating ambient temperature is 80 °C (which implies a 50% derating at max 80 °C ambient). -20 °C start up after a 30 minutes soak time.

Derating Curves

The NPS60 series total output power is up to 60 W at 50 $^{\circ}$ C with convection cooling (no additional rating for farced air) for all models except NPS62-M where the total output power is up to 55 W at 50 $^{\circ}$ C with convection cooling.

Storage and Shipping Temperature / Humidity

The NPS60-M series power supply can be stored or shipped at temperatures between -40 $^{\circ}$ C to +85 $^{\circ}$ C and relative humidity from 10% to 95% non-condensing.

Altitude

The NPS60-M series power supply will operate within specifications at altitudes -500 to 13000 feet above sea level, derating 1 ^oC per 1000 feet above 10,000 feet. Medical approval limited to a maximum altitude of 3000 meters. The power supply will not be damaged when stored at altitudes of up to 50000 feet above sea level.

Humidity

The NPS60-M series power supply will operate within specifications when subjected to a relative humidity from 10% to 90% noncondensing. The NPS60-M series power supply can be stored in a relative humidity from 10% to 95% non-condensing.

Vibration

The NPS60-M series power supply will pass the following vibration specifications:

Non-Operating Random Vibration

Acceleration	2.7	gRMS		
Frequency Range	10-2000	Hz		
Duration	20	mins		
Direction	3 mutually perpendicular axis			
PSD Profile	FREQ 10-190 Hz 190-210 Hz 210-2000 Hz	SLOPE <u>dB/oct</u> -31.213dB/oct 	PSD <u>g²/Hz</u> 0.01 g²/Hz 0.003 g²/Hz	

Operating Random Vibration

Acceleration	1.0			gRMS
Frequency Range	10-500		Hz	
Duration	20		mins	
Direction	3 mutually perpendicular axis			
PSD Profile	FREQ 10-500 Hz	SLOPE <u>dB/oct</u>		PSD <u>g²/Hz</u> 0.002 g²/Hz

Shock

The NPS60-M series power supply will pass the following vibration specifications:

Non-Operating Half-Sine Shock

Acceleration	2.7	G
Frequency Range	10-2000	Hz
Duration	20	mS
Pulse	Half-Sine	
No. of Shock	3 shock on each of 6 faces	

Operating Half-Sine Shock

Acceleration	1.0	G
Frequency Range	10-500	Hz
Duration	20	mS
Pulse	Half-Sine	
No. of Shock	3 shock on each of 6 faces	

POWER AND CONTROL SIGNAL DESCRIPTIONS

AC Input (SK1)

This connector supplies the AC Mains to the NPS60-M series power supply.

Pin 1 - Neutral

Pin 3 - Line

Earth Ground (CN1)

This tab connector is the safety ground connection and should be connected to AC input earth ground.

CN1 - Earth Ground (Safety Ground)

Main Output (SK2)

These terminals provide the main output for the NPS60-M series power supply. The Vo and the Output Return terminals are the positive and negative rails. The output is electrically isolated from the Earth Ground and can be operated as a positive or negative output.

SK2-1 and SK2-2 - Main Output+

SK2-3 and SK2-4 - Main Output common

+Sense, -Sense - (SK2-6 and SK2-5)

The NPS60-M series power supply is provide remote sensing on the low voltage main output (single output models only). It will compensate for up to 400 mV in each load line (800 mV in total). There will be reverse sense (to their own output) and cross-charging protection which will not cause damage to the power supply. This will be accomplish by using PTC pull up and pull down resistors to the main output. The output will remain in regulation regardless of sense configuration. The sensed output will not change more than 1% between all sense configurations. The – remote sense will be common to both outputs. The maximum terminal voltage under any operational condition will not exceed the maximum specified adjustment range terminal voltage when the unit is operating with local sensing (+20%) provided the total output power does not exceed the maximum rating.

APPLICATION NOTES

Output Ripple and Noise Measurement

The setup outlined in the diagram below has been used for output voltage ripple and noise measurements on the NPS60-M series. When measuring output ripple and noise, a scope jack in parallel with a 0.1 uF ceramic chip capacitor, and a 10 uF aluminum electrolytic capacitor should be used. Oscilloscope should be set to 20 MHz bandwidth for this measurement.

NPS60-M Series

RECORD OF REVISION AND CHANGES

Issue	Date	Description	Originators
1.0	06.10.2019	First Issue	K. Wang
1.1	04.27.2020	Update Derating Curve and an note typo	K. Wang
1.2	04.29.2020	Remove OTP spec	K. Wang
1.3	04.07.2021	Update isolation error	K. Wang
1.4	04.25.2022	Update UKCA safety mark	К. Ма

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

For international contact information, visit advancedenergy.com.

Advanced Energy

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.